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NOMENCLATURE

E

Ef

Em

Et

f

fl

r

R

t

Tt

Tf

V

Vf

Vt

number of edges (struts) in a structure

number of edges (struts) in the fundamental region of a periodic structure

number of edges (struts) in a non-redundant structure defined by the

Maxwell equation

number of edges (struts) in the unit triangle

the number of divisions (fundamental regions) along the side of an array; also

termed the 'frequency' of subdivision of the array

the number of divisions (unit triangles) along the side of the fundamental region;

this is the frequency of the fundamental region

number of redundant struts in the unit triangle

redundancy ; defined as the ratio of the redundant struts tO the total number of

struts; in infinite periodic configurations this is the same as the ratio of struts (or

fractions of struts) to nodes (or fractions of nodes) within the fundamental region

or the unit triangle

number of unit triangles in a fundamental region of any size

number of

number of

number of

number of

number of

unit triangles in a periodic triangular or rhombic array

fundamental regions in a periodic triangular or array

vertices (nodes) in a structure

vertices (nodes) in the fundamental region of a periodic structure

vertices (nodes) in the unit triangle
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INTRODUCTION

Morphology, an interdisciplinary study which focuses on the grammar of form and

structure, draws upon various interdependent aspects of geometry, symmetry, topology,

structure and design. It thus provides a fundamental and integrative approach to the study

of large space structures composed of many identical component parts. The modularity,

the flexibility, and the lightness makes these structures attractive for covering large areas.

Morphological techniques can be used for deriving a large number of space structures with

novel geometries which can cover a fixed area with fewer component parts. This paper

presents such techniques.

Reducing the number of component parts required for large space structures is

advantageous for several reasons. Reduced weight (payload), reduced manufacturing cost,

and reduced on-orbit assembly time are among the more attractive reasons to support the

search for space structures constructed with fewer components. However, reducing the

number of struts and nodes from a pin-jointed structure is not simple. Structures can

become unstable when struts are removed from a stable configuration, and even if stability

is retained there may be a substantial loss in "stiffness".

From the standpoint of geometry alone, uniformly periodic structures derived from

known truss configurations by removing struts or nodes are not known. This paper

addresses this issue, and presents techniques for systematically deriving new types of

configurations from the octahedral-tetrahedral truss by removing struts. This truss is

known as the "octet truss" [1] or the "tetrahedral truss" [2]. It has been commonly used in

terrestrial architecture and has been proposed for several NASA projects. In this paper,

the octet truss serves as a reference configuration for the morphology and analysis of a

large number of configurations which are derived from it.

The paper is divided into four parts:

Part 1 deals with the morphology of the octet truss, and focuses on its geometry,

symmetry and part count.

Part 2 describes structure-generation techniques which enable the derivation of

new configurations from the octet truss by systematically removing struts and nodes.

_._l[ltll0NtU.tY. Ill, a!

ix

PRECEDING PAGE BLANK NOT FILMED



Part 3 describes nine examples of double-layer truss configurations obtained by applying

the techniques described in Part 2. From the large number of geometric configurations

possible, an assortment of structurally stable configurations are selected and described.

These differ in their morphology and offer various architectural and structural advantages.

Part 4 briefly discusses the rationale including some practical and analytical considerations

associated with the truss configurations presented in Part 3 and summarizes the results of

the paper.

The techniques for generating structures described here are general and extend to a

similar derivation of configurations from other trusses and space structures. Interesting

candidates for such extension are the larger family of octahedral-tetrahedral configurations

from the entire symmetry of the cube, and the wider range obtained from the symmetry of

the icosahedron, a regular polyhedron with twenty equilateral triangular faces. Such

configurations introduce several different angles and strut lengths, and expand the

vocabulary of space architecture.
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OCTAHEDRAL-TETRAHEDRAL TRUSS

tlaresh Lalvani"
Senior Research Scientist

Joint Institute for Advancement of Flight Sciences
George Washington University

and

Timothy J. Collins
Aerospace Engineer

NASA Langley Research Center

PART |

MORPHOLOGY OF THE OCTAIIEDRAL-TETRAItEDRAL

CONFIGURATION (OCTET TRUSS)

I. 1 Geometry

The octahedral-tetrahedral (octet) truss configuration used here is well-known. It is

composed of a periodic array of "regular" octahedra and tetrahedra, each composed of

equilateral triangular faces. The octahedron has eight faces and the tetrahedron has four

faces. Since the face triangles in the two cases have equal sides and angles, these two

polyhedra are termed regular. The array completely fills 3-dimensional space without gaps

and is thus referred to as a "space-filling". The octet truss itself, as is commonly used, is a

slice from the space-filling 1. The design and structural characteristics of the octet truss are

discussed in references [3-5] for both fiat and curved trusses.

A portion of the octet configuration is shown in Figtwe 1 as a truss made up of

nodes and struts. This truss can be decomposed into three layers: the top layer, the core,

and the bottom layer which are shown separately in the figure. In its plan view (shown on

the right side of Figure 1) the top and bottom layers are "tessellations" of equilateral

triangles in shifted position; the word tessellation has a Latin origin and means a mosaic or

tiling. The core, which consists of inclined members in a 3-dimensional zig-zag array, is a

tessellation of regular hexagons in this view.

*Also: Professor, School of Architecture, Pratt Institute, Br_>klyn, NY ! 1205 (Permanent Address); on
_batical from Pratt Institute at the time of this work during the Fall 1989 and Spring 1990 semesters.
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Note thattheoctetarray is actuallycomposedof threepolyhedra,andnot two. In

addition to the octahedronthere are two types of tetrahedra. One is an "upright"

tetrahedronsittingon its triangularbaseandhavinga vertexlying in thetop trusslayeras
shown in Figure 2. The other is an "inverted" tetrahedronwith its vertex lying in the

bottomtrusslayer. Thevertexof anupright tetrahedroncorrespondsto atop layer truss

node and is representedby a white circle. The vertex of an inverted tetrahedron

correspondsto a bottom layer truss nodeand is representedby a shadedcircle. An

octahedronhas threetop layer nodesandthreebottomlayer nodesat its vertices. The

centerof theoctahedronis representedby astarasshownin Figure2.

Onepossibletriangulararrayof theoctetconfigurationis shownin Figure3a. The
particular configurationshownhasan invertedtetrahedron(shownin dottedlines)at the

apexmarkedO, and will be referred to as OCTETI throughout the paper. In addition, the

other two corners of the array are also inverted tetrahedra. A portion of the OCTET1

geometry in an infinite array is shown in Figure 3b. An alternative triangular array (and

corresponding infinite portion) of the octet configuration is shown in Figures 4a and 4b.

The triangular array has an octahedron at each of its three comers. This configuration of

the octet truss will be referred to as OCTET2 in this paper. The practice of showing both

triangular and infinite portions of truss arrays will be carried throughout this paper. Thus

Figures 3b and 4b are presented even though it is obvious that the infinite configurations of

OCTET1 and OCTET2 are identical. The usefulness of these two configurations will

become apparent when techniques for generating reduced-part-count geometries are

discussed later in the paper. A third type of triangular array is also possible. This

arrangement has three different polyhedra at its comers, and can be obtained from OCTET1

or _-q_T2 by keeping the apex O fixed and making the array smaller or larger such that

the other two corners have different polyhedra.

1.2 Symmetry

The octet truss, like all periodic configurations, can be characterized by its

symmetry. An understanding of its symmetry provides a basis for generating new

structures related to the octet configuration; such new structures will be described in Part 2.

Symmetry also provides an expedient way to determine the part count, or the number of

component parts, in a particular truss configuration.

1-2



1.2.1 Unit Triangle (Kaleidoscope)

The symmetry of the octet configuration 2 can be understood by identifying its

symmetry elements and the "unit" polygon or polyhedron. The unit polyhedron of the octet

configuration is a triangular prism. The plan view of this prism is an equilateral triangle.

This triangle is the unit polygon of the octet truss as shown in Figures 3 and 4, and is the

spatial unit which generates the entire octet configuration by using many replicas of the

same unit. It will be referred to as the "unit triangle" throughout this paper. Since all

configurations in this paper will be shown in their plan view, it will be convenient to

describe the octet configuration, and all the derived configurations described in Parts 2 and

3, in terms of this unit triangle. The unit triangle of the octet configuration is shown in

Figure 5. It is bounded by six symmetry elements, namely, three different axes of rotation

and three different mirror planes (see right side of Figure 5).

The three different axes of rotation are 3-fold axes of symmetry determined by the

vertical axes of symmetry passing through each of the three polyhedra shown in Figure 2.

A 3-fold axis of rotation divides space into three identical regions, where each region can

be superimposed over the other by a rotation of 120 ° (or n/3) about this axis. In Figure 5,

these three axes are denoted as follows • the white triangle for the vertical axis through the

upright tetrahedron, the shaded triangle for the axis through the inverted tetrahedron, and

the star with the black triangle for the axis through the octahedron. The three mirror planes

are shown in heavy lines and join two adjacent axes. Note that the symbols for the rotation

axes shown in Figure 5 specifically denote rotation axes that have an associated (adjacent)

mirror plane. This is in contrast to 3-fold rotation axes which will become relevant later

that do not have an associated mirror plane. Note that the mirror planes are vertical and

perpendicular to the plane of the octet truss. The three mirror planes thus define a 3-

dimensional region shaped as a triangular prism; this is the unit polyhedron mentioned

earlier. This region, bound by mirrors, acts like a 3-dimensional kaleidoscope. The

portion of the octet truss within this kaleidoscope multiplies by reflections about the mirror

planes to generate an infinite octet configuration.

The unit triangle contains fractions of truss struts and nodes (shown on the left in

Figure 5). The top, core and bottom layers have "half-struts" within the unit triangle which

become full struts after reflection. These three layers are shown separated in Figure 6.

While the portions of top and bottom struts within the unit triangle struts are half as long as

the full strut, the core strut is halved lengthwise, The top and bottom nodes are each 1/6th
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portions of a full nodedeterminedby the 60° angleof the unit triangle. From these
fractionalpartswithin the kaleidoscope,theentireoctettrussis generatedby reflections.

Before this processis described,it is importantto point out that the unit trianglecanbe

further decomposedinto a smallerregion called the "fundamentalregion" [6]. This is
describednext.

1.2.2 Fundamental Region

The unit triangle of the octet truss has a subtle symmetry within it. It can be halved

into two smaller right-angled triangular regions by a vertical plane passing through the

octahedron (Figure 7, top). The right-angled triangle is the minimum unit which is

necessary to generate the entire structure by "symmetry operations" and is termed the

"fundamental region" (Figure 7, bottom). The vertical plane is indicated by a dashed line

and is referred to as a plane of "inversion". In addition to this plane, the fundamental

region of the octet truss is bound by two mirror planes, and two 3-fold axes of symmetry

lying on two of its vertices. One vertex is determined by an octahedron and the other by a

tetrahedron.

By inversion about the vertical plane, everything lying on the bottom right of the

plane and facing up is converted to top-left and facing down. In Figure 7, this is illustrated

by shading the two halves of the unit triangle in two different shades. The darker shade

represents the bottom right-half of the octet truss and includes the bottom 1/6 node, the

bottom half-strut and half of the core strut lying below the "mid-plane" of the truss; the

mid-plane is an imaginary horizontal plane lying midway between the top and bottom truss

layers and which divides the truss into upper and lower halves. By inversion, the darker

shade becomes the lighter shade, which represents the top left-half of the truss and includes

the top 1/6 node, the top half-strut and the top half of the core strut. Inversion around a

plane, as described here, is also a 2-fold rotation around a horizontal axis lying on the mid-

plane and passing through the center of the octahedron and the center of the core strut.

Inversion flips an upright tetrahedron into an inverted tetrahedron.

1.2.3 Periodic Arrays of Unit Triangles

Many replicas of the unit triangle, each containing two fundamental regions, can be used to

fill the plane and thus generate a periodic truss array. There are several different plane-
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filling procedures. In each procedure, the fraction of the octet truss within each unit

triangle (and hence fundamental region), repeats correspondingly to generate the full octet

truss. One procedure which uses increasingly larger "triangular arrays" is shown in

Figure 8. It uses the unit triangle as a repeating unit. The single unit triangle in (a) grows

to an arrangement of four unit triangles in (b) by local reflections across the mirror planes,

and further to nine unit triangles in (c) by additional local reflections. The process can be

continued to get increasingly larger arrays of the unit triangle 3. An array of 36 unit

triangles is shown in (d).

The extent of plane-filling can be described in terms of the size of the triangular array. This

size is specified by the number of divisions f along the outer edge of the triangular array,

where f denotes the "frequency" of subdivision of the array [see Reference 1]. The four

stages shown in Figure 8 thus are f=l, 2, 3, and 6 respectively.

The corresponding portions of the octet truss for each of the four stages in Figure 8 are

shown in Figure 9. The rotation axes of the octahedra and tetrahedra shown in Figure 8

correspond exactly to the top nodes, bottom nodes, and the centers of octahedra shown in

Figure 9. The top, core and bottom layers corresponding to these four stages are shown

separated in Figure 10.

The number of unit triangles Tt in a triangular octet array can be described in terms of f:

Tt = f2 ............... (1)

Besides a triangular array, other useful periodic arrays of unit triangles are rhombic

and hexagonal arrays. These will be discussed in more detail later. The number of unit

triangles in a rhombic array is 2xTt, since a rhombus is composed of two triangles. In a

hexagonal array, the number of unit triangles is 6xTt since a hexagon is composed of six

triangles. For the purpose of formulating analytical models of various truss configurations,

hexagonal arrays were used. These were obtained by rotating triangular arrays, such as

those in Figures 3 and 4, around the apex marked O in 60 ° increments.

For the purposes of this study, a triangular array with f=12 was chosen as a

baseline configuration. This array is composed of 144 unit triangles and corresponds

exactly to configurations OCTET1 or OCTET2 shown earlier in Figures 3a and 4a. For a 2

meter strut length, f=12 produces a 24 meter wide (edge to edge) hexagonal array. The
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sizeandshapeof suchahexagonaltrussarraywereconsideredpracticalfor severalfuture

NASA applicationscurrentlyunderconsideration.

1.3 Part Count

The number of component parts or "part count" of a space structure is an important

consideration in the design, manufacturing, and assembly of space structures. The

fundamental region and the unit polygon/polyhedron provide an expedient way to

determine the part count in periodic space structures. Such a part count is here termed the

"fractional part count". The fundamental region has been used to derive the part count in

polyhedral structures in reference [7]. The part count within the fundamental region is

given by Vf and Ef, where Vf is the number of nodes (or vertices) and Ef the number of

struts (or edges) within the fundamental region. The part count within a unit triangle given

by Vt and Et, where Vt is the number of nodes and Et the number of struts in the unit

triangle. Either Vf and Ef, or Vt and E t, can be used to derive the total part count in a

periodic structure. However, Vt and Et will be used in Part 3 as a basis for comparing the

part counts of different configurations derived from the octet truss.

1.3.1 Part Count for the Infinite Octet Truss

In the case of the octet configurations OCTET1 and OCTET2, the unit triangle is the

smallest region which has component parts from the top, core and bottom layers. Thus Vt

and Et and are derived first and can be halved to obtain Vf and Ef since there are two

fundamental regions in the unit triangle. The portion of the truss that lies within the unit

triangle was already shown in Figure 5. The top and bottom struts are each halved in the

region, the core member lies on the mirror plane and is therefore also halved since it is

shared with a neighboring unit triangle. That is,

Et(top) = Et(bottom) = Et(core) = 1/2 ................ (2)

Since each of the three layers of the truss have a half-strut within the unit triangle, it

follows that the number of struts in each layer equals l/3rd the total number of struts, a

result reported in reference [2]. Further, the total number of struts Et in the unit triangle,

obtained by adding the struts in each of the three layers, equals 3/2, i.e.
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Et = 3/2 ................. (3)

In Figure 5, we also seethat the unit triangle contains2 fractional nodeswhere each

fractionis 1/6thof afull node. Eachnodeis sharedby six regionsmeetingat a3-fold axis
of rotationandis thusdividedintosixequalfractions.Thetotalnumberof nodesVt within

theunit triangleequals2 times1/6or 1/3,i.e.

Vt = 1/3 ................ (4)

Fromrelations(3) and(4),

Et = (9/2)Vt ................ (5)

This relation, basedon the unit triangle,alsogivestheproportionof thetotal numberof
strutsE to thetotal numberof nodesV in theinfinite octet trusssinceVt andEt areboth

multipliedthesamenumberof timesin aperiodicarray. Relation(5)canalsobedescribed
in termsof Vf andEf byreplacingEt byEf, andVt by Vf, respectively.

1.3.2 Redundancy in Infinite Configurations

For any particular truss, those struts which are not necessary to provide a rigid

(stable) structure are generally termed redundant. The redundancy in an infinite periodic

configuration can be defined as the ratio of struts to nodes in the fundamental region or

alternatively in the unit polygon/polyhedron. Since the unit polygon/polyhedron will be

used for comparative part count studies in Part 3, the redundancy here is described in terms

of the unit triangle. From the Maxwell equation [8], the number of struts Em in the unit

triangle of a non-redundant infinite truss configuration with Vt nodes can be expressed as :

and

Em = 2Vt

Em = 3Vt

(2-dimensional case)

(3-dimensional case)

................ (6)

................ (7)

The number of redundant struts r in the unit triangle equals Et-Em, i.e.
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r = Et- Em ................ (8)

The redundancy R is defined here as the ratio of the number of redundant members r to the

number of members Et. That is,

R = r/E t = (E t-Em)/Et = 1-(Em/Et) ................ (9)

Substituting for Em from (6) and (7) respectively in (9),

R = 1 -(2Vt/ Et) (2-dimensional case) ................ (10)

R = 1 - (3Vt/ Et) (3-dimensional case) ................ (11)

For the infinite octet configuration, the redundancy R can be obtained by substituting the

values of Vt (=1/3) and Et (=3/2) from (3) and (4) in relation (11). This gives:

R = 1/3 (or 33.33%) (double-layered case) ................ (12)

That is, the octet truss has a redundancy of 1/3 (33.33%) within the unit triangle. It

follows that the entire infinite truss also has l/3rd redundant members. Alternatively, the

redundancy from the fundamental region can be obtained by substituting Vt and Et by Vf

(=1/6) and Ef (=3/4) respectively in relation (11).

The redundancy of 33.33% defines the upper limit for infinite truss configurations

derived from the octet truss. All derivatives obtained by removing struts will have fewer

members than the octet configuration and they will thus have R < 33.33%. The

redundancy of the top and bottom layers can be similarly derived using relation (10). From

Fig.6, both top and bottom single layers have Vt = 1/6 and Et=l/2. Substituting these values

in relation (10) gives

R = 1/3 (or 33.33%) (single-layered case) ................ (13)

In the various examples described in Part 3, this limit will provide a reference for the single

layers of derivative configurations.
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1.3.3 Part Count in a Periodic Array

The total part count in a periodic array can be determined by multiplying the number

of parts within a unit polygon by the number of unit polygons in the array. Considering

triangular arrays of the octet configuration, the part count within the unit triangle is given

by relations (3) and (4), and the number of unit triangles in a triangular array is given by

relation (1). Multiplying both (3) and (4) by (1),

E=TtxEt = f2xEt ................ (14)

V=TtxVt = f2xVt ................. (15)

where E and V are the number of struts and nodes respectively in a triangular array of the

octet configuration. Alternatively, E and V can be determined by multiplying Ef and Vf,

respectively, with the number of fundamental regions Tf in a triangular array. The number

in a rhombic array is twice, and in a hexagonal array six times the number in a triangular

array. Examples of determining part count will be discussed in Part 2 of the paper.
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PART2

STRUCTURE-GENERATION TECHNIQUES

From the octet truss configuration an extremely large number of structures can be

derived by removing struts and/or nodes. Systematic structure-generation of a variety of

space structures by combinatorial addition or removal of edges within a fundamental

region has been described in [7]. This includes a large class of polyhedra and some

examples of space-filling polyhedral structures. Extension of this method to the generation

of complex 2-dimensional periodic patterns has been described in [9]. The techniques

presented in this paper are an extension of the prior work to double-layered space structures

and are restricted to configurations derived from the octet truss. In all examples of

configurations described in this paper, the node positions of the octet truss (OCTET1 or

OCTET2) and the derived configuration are the same. The derived configurations vary in

their geometry, type of symmetry, the number of struts and nodes, and structural

performance.

Since the double-layered configurations are complex in their geometry and

symmetry, they are decomposed into separate top, core and bottom layers. These are then

superimposed to form a complete structure. Of the three layers, the top and bottom layers

were found to be more important in generating new configurations by removing struts and

nodes from the octet configuration. The specific geometry of examples of the derivative

double-layered configurations will be described in Part 3. The core geometry of the source

octet configuration (OCTET1 or OCTET2) was left unchanged in two-thirds of the

examples. In the remaining one-third cases, some core struts were removed because their

associated nodes in the top or bottom layers had been removed. In these cases, the core

geometry was thus dependent on the geometry of the top and bottom layers.

The separated top and bottom layers act like "single-layer configurations". The

types of permissible symmetries of single-layer configurations are described first in this

section. The concept of extending the fundamental region to a larger size is described next,

and is followed by a description of plane-filling procedures. The method of removal of

struts and nodes to generate two different classes of single-layer configurations with a

reduced part count is described next. In some cases, top and bottom layers having an

identical geometry and symmetry are superimposed after a rotation or a reflection of one of

the layers. In other cases, two different geometries and symmetries are superimposed to

obtain a double-layered configuration.
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2.1 Permissible Symmetries

When some nodes and struts are removed, the derived configuration may have a

different symmetry than the original octet truss. For the top and the bottom single layers,

each taken separately, there are only three permissible symmetries 5 that are compatable

with the octet truss geometry [10]. These three symmetries use only 3-fold axes of

symmetry. Although 6-fold symmetry is possible at a node of a single-layer configuration,

for double-layer configurations, such 6-fold symmetry becomes 3-fold. When top and

bottom single layers are superimposed, as in the octet truss, the double-layered

configurations obtained this way have more complex symmetries. The permissible

symmetries for double-layered configurations derived from the octet truss are eight 4 in

number. Such symmetries are described in reference [11]. The three permissible

symmetries for the top and bottom layers of the octet truss with struts and/or nodes

removed will be referred to as Symmetry Types A, B and C, and are shown in Figure 11.

As will be described next, the fundamental regions of these three types of symmetry are

different. Each fundamental region has a different shape and is bound by different

symmetry elements. It is noted that because the fundamental regions discussed throughout

the remainder of the paper are for single-layer configurations ('all struts lie in a plane), these

fundamental regions differ from the double-layer fundamental region shown for the octet

truss in Figure 7. Recall that a fundamental region is the minimum truss unit necessary to

generate an entire truss array by symmetry operations.

2.2 Fundamental Regions of the Permissible Symmetries

The fundamental region of Symmetry Type A is a kaleidoscopic equilateral

triangle. It is bound by three mirror planes on the sides of the triangle, and three different

3-fold axes of rotation at the vertices. The three different axes shown in the figure

correspond to axes through the two different tetrahedra and the octahedron. Ahematively,

the axis could pass through three tetrahedra or three octahedra. This is the type of

symmetry characteristic of the top or bottom layer of the octet truss configuration.

The fundamental region of Symmetry Type B is an isosceles triangle, with an

obtuse angle of 120 °. The two acute vertices have the same 3-fold axis of rotation and the

side joining these two is a mirror plane. The other two sides (shown as dashed lines)

define the edges of the fundamental region only and are not mirror planes. The obtuse

vertex is a different type of 3-fold axis of rotation. There are no mirror planes passing
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throughthis axisof rotation. Thenotation is modified to show thepinwheel (or rotary)

natureof theaxis by extendingthesidesof the small trianglein a clockwiseor counter-

clockwisemanner. In thefigure, the threeaxesshownin the fundamentalregion pass

throughthreeupright tetrahedra.Alternatively, the three axes could pass through three

inverted tetrahedra or three octahedra. Three such regions, obtained by a 3-fold rotation

around the obtuse vertex (pinwheel), make a larger kaleidoscopic equilateral triangle.

The fundamental region of Symmetry Type C is a rhombus with acute angles of

60 °. It has three 3-fold axes of rotation which are different and a fourth 3-fold axis which

is identical to any one of these three. There is no mirror plane in this region and hence all

the 3-fold axes of rotation act like pinwheels. The notation of the axes is modified

accordingly as in the last example. In the figure, the three different axes pass through the

inverted tetrahedron, the upright tetrahedron and the octahedron. The fourth axis is shown

through an upright tetrahedron.

2.3 Fundamental Regions of Increasing Size

Several unit triangles of the octet truss can be fused together to generate

fundamental regions of increasing size for each of the three types of symmetries shown in

Figure 11. In each case the unit triangles, which are smaller, "subdivide" the interior of

the larger fundamental region. Such subdivision permits the possibility of defining

fundamental regions of any size containing any number of struts and nodes. It will be

shown that larger fundamental regions allow for a larger number of strut and node

combinations which can be removed to derive reduced-part-count structures. Details of this

concept will now be described for each symmetry type. Alternative subdivisions of the

fundamental region have been addressed in 191.

Symmetry Type A: A sequence of increasingly larger fundamental regions for

Symmetry Type A is shown in Figure 12a. The size of the fundamental regions is

specified by the frequency fl which equals the number of unit divisions (or unit triangles)

along an edge of the region. In Symmetry Type A, this division is along the edge of the

region as shown. The first stage, fl=l, is the smallest possible fundamental region for this

symmetry type and has the same size as the unit triangle of the octet configuration. The

second stage, fl=2 fundamental region, is composed of four unit triangles (shown in
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dotted lines). The fl=3 fundamentalregion has9 unit triangles (also shownin dotted

lines), thefl=4 fundamentalregionhas16unit triangles,andsoon.

For each fundamental region shown in Figure 12a, the outer three sides are mirror planes

as required by Symmetry Type A, and the three vertices on the outer corners are three

different axes of symmetry. In the figure, the vertex marked O is kept fixed and

corresponds to an axis through an inverted tetrahedron in the example shown. As fl

increases, the other two axes change and are specified by the sequence of the three

different polyhedra in the octet array (compare with Figure 8 or 9).

The number of unit triangles t in a fundamental region of frequency fl and Symmetry Type

A can be described as follows"

t = (fl) 2 ............... (16)

and is similar to equation (1) which gave the number of unit triangles in an octet truss

array.

Symmetry Type B: A sequence of two increasingly larger fundamental regions for

Symmetry Type B is shown in Figure 12b. Note that the subdivisions of the fundamental

region for this symmetry are along the longer side of the fundamental region and are

restricted to values of fl which are multiples of 3. This is due to the nature of the 3-fold

axis of rotation at the obtuse vertex of the fundamental region which requires a rotation of

120 ° at this vertex. By this rotation, a 3-fold axis lying at one acute vertex of the

fundamental region is rotated to the other acute vertex. Thus the two acute vertices of the

fundamental region must be the same. This occurs only when fl equals 3, 6, 9, 12 .... and

so on. In the figure, each 3-fold axis is through an inverted tetrahedron as indicated by the

shaded triangles. Alternatively, the 3-fold axes could be through upright tetrahedra or

octahedra only, but here too the values of fi are restricted to multiples of 3.

The number of unit triangles t in a fundamental region of frequency fl and Symmetry Type

B can be described as follows "

t=l/3x(fl) 2 ............... (17)
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Symmetry Type C : In Symmetry Type C there are two different ways 6 to obtain larger

rhombic fundamental regions which are subdivided into unit triangles. Alternative 1 is

shown in Figure 12c, and is based on "doubling" the fundamental regions of Type A

shown in Figure 12a. The number of unit triangles t is also doubled in Alternative 1, and

is given by :

t = 2 x (fl)2 ............... (18)

where fl is any integer. Here the frequency fl is given by the number of divisions along

the shorter diagonal of the rhombic fundamental region.

Similarly, Alternative 2 (Figure 12d) is obtained by "doubling" the fundamental

regions of Type B shown earlier in Figure 12b. Again, fl is restricted to multiples of 3 as

in Type B, and is given by the number of divisions along the longer diagonal of the

rhombic fundamental region. The number of unit triangles t is double that in Type B and

can be expressed as :

t = 2/3 x (fl)2 ............... (19)

2.4 Plane-filling Procedure

Once a fundamental region with a specific value of fl is determined, many replicas

of this region can be used to fill the plane. In other words, periodic truss arrays are

generated which contain many replicas of the fundamental region each of which is

composed of one or more unit triangles. The procedure for plane-filling is slightly different

for the three types of symmetries.

Symmetry Type A:

In Symmetry Type A, the procedure of plane-filling is the same as described earlier

in Section 1.2.3 to obtain a triangular array of unit triangles whereby the equilateral triangle

fundamental region is repeated by local reflections about the mirror planes. An array using

fl=l fundamental regions (same as unit triangles) is shown in Figure 13. The extent of

plane-filling is specified by f as before. In the figure shown, f=6. In Figure 14, a

fundamental region with fl=2 is used to generate an array with f=3. The number of
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fundamentalregionsTf ina triangulararrayof frequencyf andhavingSymmetryTypeA is

givenby thefollowingrelationwhich issimilar to relation(1):

Tf= (f)2 (TypeA) ...............(20)

The numberof unit trianglesis thesamein Figures13and 14. In Figure 14, the

fl=2 fundamentalregionwith t=4 is four timesaslargeasthefl =1fundamentalregionin

Figure 13which hast=l. The fl=2 region fills a triangulararrayof thesameareawith

one-fourthasmanyunits. For a fixed area,f decreasesasfl increases.The numberof
unit trianglesTt in atriangulararrayof frequencyf andcomposedof fundamentalregions

of frequencyfl is obtainedby multiplying the numberof unit trianglesin a fundamental

regionby thenumberof fundamentalregions.

Tt=txTf

Tt = (f x fl)2 ...............(21)

Relation (21) is similar to relation (1) but is more general,and it holds for all three

SymmetryTypes. Eachsinglelayerof theoctettrussis aspecialcaseof symmetrytypeA

with eachfundamentalregion havingoneunit trianglealong the sideof a fundamental
region,i.e., fl=l andTt = f2 asin relation(1).

Symmetry Type B:

In Symmetry Type B, the values of fl are restricted to multiples of 3. The

minimum case has fl =3 and is shown in Figure 15. By rotation about the pinwheel axis,

three fundamental regions form a large equilateral triangle which is then repeated by

reflections (as in Sec. 1.2.3) to generate a triangular array. In the example shown, f=2

and the number of unit triangles equals 36 as in the previous two cases. Relation (21)

holds for the number of unit triangles, and relation (20) for the number of fundamental

regions Tf is modified as follows:

Tf= 3(f )2 (Type B) ............... (22)

Symmetry Type C:

In Symmetry Type C, a different plane-filling procedure is used to generate

periodic arrays rhombic fundamental regions. Instead of repeated reflections, 3-fold

rotations are used to generate a rhombic array as shown in Figure 167. The rhombic array

2-6



is twice thesizeof thetriangulararray, and can be described in terms of f and fl as in the

other two cases. Here fl can be any number. For rhombic configurations, the number of

unit triangles Tt in the fundamental region and the number of fundamental regions a

periodic Tf array are given by:

Tt = 2(f x fl 2)

Tt = 2(f x f12)

Tf= (f)2

Tf= 3(f )2

(Type C, Alternative 1)

(Type C, Alternative 2)

............... (23)

............... (24)

2.5 Removal of Struts and Nodes

Once a larger fundamental region with frequency fl and containing truss struts and

nodes is obtained, an extremely large number of truss configurations can be derived by

removing struts and nodes from this region 8. The larger fundamental region contains a

larger portion of the octet configuration. This is shown in Figure 17 with fundamental

regions of increasing size derived from the top layer of OCTET19. The stages f1=1,2,3,4

and 6 correspond to the symmetry representations shown in Figure 12a and the number of

component parts in the fundamental region increases as fl increases. This permits more

combinations for strut or node removal enabling the generation of an increasingly larger

number of derived structures. When the fundamental region with removed parts is repeated

to fill space, configurations with reduced part count are obtained. The new structure has a

different geometry, and its symmetry may or may not be the same as the structure from

which it is derived.

Two useful classes of single-layer configurations with a reduced part count are

identified in this section. The first class includes configurations from which only struts are

removed and all nodes are retained. The second class of structures includes examples

where single nodes, or a group of nodes are removed along with associated struts. One

example of each type of configuration is described here to illustrate the technique, and

others will be shown in Part 3.

The first example (Figure 18) shows the generation of a single-layer configuration

by removing struts only. It has a Symmetry Type A, the fundamental region has fl=2,

and the triangular array has f=6 (illustration on right). The "source" fundamental region,

corresponding to the equivalent region of OCTET I from which the struts are removed

(compare with fl =2 region in Figure 17), is shown on left (top) and contains one full strut

and two half-struts. From this many combinations of struts can be removed. In the
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exampleshown,onehalf-strutis removedfrom thesourcefundamentalregionto obtaina
"derived"fundamentalregionshownaboveit (bottomleft). When this newfundamental

region is repeatedto fill the planeby reflections, a new single-layerconfiguration is

obtained. This new configurationhasstrutsremovedfrom it in a periodic manneras
shownin theillustration10.

Largerfundamentalregionsalsopermittheremovalof morecombinationsof struts

and nodes for the purpose of deriving new configurations. One example is shown for

Symmetry Type B with fl=6 in Figure 19. The source fundamental region is again shown

at top left, the derived one at bottom left, and the triangular array on the right. The source

fundamental region has 5 full struts and 2 half-struts from which 2 full and 1 half-strut are

removed. In addition, the source has 1 full and 2 half-nodes from which 1 half-node is

removed. Note that the removed half-node is still shown in the figure for visualization

purposes. However it is clear in the truss array that this node has been removed because no

struts are attached to it. When repeated to fill the plane, the triangular array shows the

larger open spaces that are generated within the single layer. When the triangular array

itself is repeated, e.g. to generate a hexagonal truss array, the open spaces become closed

open areas in the shape of a non-regular hexagon (see for example, the top layer of

Fig.29d).

2.6 Superimposition of Layers

From the large number of single-layer configurations which can be generated by the

techniques just described, a still larger number of double-layer configurations can be

obtained by superimposing any top over over any bottom layer and adding core members.

The size of the array fixes f for both layers. The matching of the two layers is guaranteed

as long as fl is kept the same in both. Superposition of two layers with different values of

fl is possible, and symmetry is retained as long as one value of fl is a simple multiple of

the other. Although this paper presents examples where top and bottom layers have the

same symmetry, it is possible for the two layers to have different symmery types.

A variety of examples will be described in Part 3. Some of the most useful cases

are configurations where the two layers are identical in their geometry and symmetry. This

guarantees the same part count and same assembly procedure for the two layers. Several

examples of this type will be shown.
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2.7 Summary of Structure-Generation Procedure

From the preceding sections, the procedure for generating a periodic double-layered

configuration with a reduced part count can be summarized as follows :

1. Separate the double layer of the source octet configuration (OCTET1 or OCTET2)
into top and bottom layers.

2. Apply the following structure-generation techniques to the separate layers :

i) Select the type of fundamental region by selecting the
Symmetry Types A, B or C.

ii) Specify fl, the frequency of the fundamental region.

iii) Remove struts or nodes from the fundamental region.

iv) Apply an appropriate plane-filling procedure using reflections, rotations or
translations, to the fundamental region which has struts and nodes

removed (this specifies f).

3. Superimpose the top and bottom layers.

4. Insert the core, i.e. connect the top and bottom nodes with appropriate core struts.

Note that the same procedure of removing struts and nodes can be applied to the core.

ttowever, in the examples described in Part 3, the core was either kept intact or its

geometry was determined by the top and bottom layers. The dependent nature of the

geometry of the core will become clear with specific examples.

2.8 Part Count and Redundancy of Derived Configurations

For any derived periodic array, a general procedure for determining the part count and the

redundancy is as follows :

1) Determine f and fl; f is the frequency of the fundamental regions within the array and fl
is the frequency of the unit triangles within the fundamental region.

2) Determine Ef and Vf, the number of struts and nodes within the fundamental region

(after struts and nodes are removed); this can be done by determining the fundamental
region of the configuration and counting the parts within it. Note fractional parts as

appropriate.
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3)

4)

5)

6)

7)

8)

Determine t, the number of unit triangles within the fundamental region; this can be
derived from relations (16-19).

Determine Tf, the number of fundamental regions in the periodic array 11. This is
different for each Symmetry Type and is given by from relations (20) and (22-24).

Determine Et and Vt, the number of struts and nodes within the unit triangle; this can
be obtained by dividing the result of Step 1 by Step 2, i.e.

Et =Ef/t ............... (25)

and

Vt =V f/t ............... (26)

Determine R, the redundancy of the configuration; this is derived from relation (10) for
a single-layer configuration.

Determine Tt, the number of unit triangles in the periodic array with fundamental

regions of frequency f.

Derive E and V, the total number of struts and nodes in the periodic array.These can be

obtained in two different ways :

i) from the fundamental region by multiplying the results of steps 2 and 3, i.e.

E =Ef x Tf ............... (27)

and

V =Vf x Tf ............... (28)
or

ii) from the unit triangle by multiplying the results of steps 3 and 5, i.e.

E =Et x Tt ............... (29)

and

V=Vt x Tt ............... (30)

All of the relations described so far are summarized in Table 1.
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Unit Triangles
in Fundamental

Region(t)

Fundamental
Regions

in Array(Tf)

Unit Triangles
in

Array (Tt)

Numberof Struts in

Unit Triangle (Et)

Ef
E t _ --

t

Number of Nodes

in Unit Triangle
(v0

Vf

Vt- t

Struts in Array (E)

E = Ef Tf
or

E = Et Tt

Nodes in Array (V)

V = Vf Tf
or

V = Vt Tt

Symmetry Type A
(Triangular Array)

fl 2

I"2

(f x fl)2

Ef

2
fl

Vf

2
fl

Ef f2

or

Et(f x fl) 2

Symmetry Type B
(Triangular Array)

2
fl

3

3f2

(f x fl)2

3Ef

2
fl

3Vf

fl 2

3Ef f2

or

Et(f x fl)2

Symmetry Type C
(Rhombic Array)

Alternate 1 Alternate 2

2fl 2

t"2

2(f x f 1)2

Ef

2fl 2

Wf

2
2fl

Eff 2

or

2Et(f x fl) 2

2f12
3

3f2

2(f x fl) 2

3Ef

2fl 2

3Vf

2fl 2

3El f2

or

2Et(f x fl)2

Vrf 2

or

3Vf t.2

or

vff2

or

Vt(f x fl)2 Vt(f x fl)2 2Vt(f x fl)2

3Vf t-2

or

2Vt(f x fl)2

Table 1.

Summary of Equations for Single-Layer Truss Arrays of the Three Symmetry Types.
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As an example, the derivation of the part count and redundancy of the single-layer

truss configuration of Symmetry Type A derived by removing struts from the top layer of

_T1, shown in Figure 18, is described.

1) The source fundamental region (on top left) has a frequency 2, i.e. fl=2. This

region has 1 full strut and 2 half-struts, making a total of 2 struts, i.e. Ef=2. It also has a

1/6th node at a vertex and a 1/2 node at the opposite edge of the triangular region, making a

total of 2/3rd nodes, i.e Vf=2/3. The derived periodic array has 6 fundamental regions

along a side, i.e. f=6.

2) In the derived fundamental region (shown below on left), one half-strut is

removed while the nodes remain unchanged, i.e. Ef=3/2 and Vf=2/3.

3) The number of unit triangles in the fundamental region, given by relation (16),

equals 4, i.e.t=4.

4) The triangular array on the right is obtained by using the plane-filling procedure

for Symmetry Type A, i.e. repeated reflections of the fundamental region, and has a

frequency f=6. The number of fundamental regions Tf in the triangular array of f=6 as

shown is determined by relation (20) and gives Tf=-36.

5) Since the fundamental region has 4 unit triangles, Et=3/8 (from relation (25)),

and VI=I/6 (from relation (26)).

6) The redundancy R, obtained by substituting Et and V t into relation (10), is

R=I/9 or 11.11%.

7) The number of unit triangles Tt is obtained by substituting for f and fl in

relation (21) and gives TI=I44.

8) The total number of struts E, obtained by substituting for Ef and Tf in

relation (27) or substituting Et and T t _n relation (29), gives E=54. Similarly, the total

number of nodes V, obtained by substituting for Vf and Tf in relation (28) or Vt and Et in

relation (30), is V=24.

II. The part count and redundancy for the example array having Symmetry Type B and

shown in Figure 19, derived from the top layer of OCTET1 by removing nodes and struts,

is similarly derived as outlined below and as shown in the figure.

1) fl=6, f=2

2) Ef=7/2 and Vf=3/2

3) t=12

4) Tf=12

5) Et=7/24, Vt=l/8
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6) R=l/7
7) Tt=144

8) E--42, V=I8

III. Finally, another example of structure generation and of determining part count and

redundancy for a single-layer truss configuration with struts only removed will be given for

a rhombic array. Figure 20 shows a single-layer configuration of symmetry type C

(alternate 2) obtained by removing struts from the top layer of OCTET2. Derivation of the

part count and redundancy for this array is outlined as follows:

1) fl=3, f=4

2) Ef=2 and Vf=l

3) t=6

4) Tf=288

5) Et=l/3, Vt=l/6

6) R---0 (no redundant struts in this single-layer configuration)

7) Tt=288

8) E=96, V=48

Note that for all of the examples given the values obtained for E and V can be

verified by directly counting the number of struts and nodes in Figures 18, 19, and 20.

When doing this, all struts and nodes lying on the edges of the derived array must be

assigned their appropriate fractional count. For example, the outer edge of the array in

Figure 20 contains 16 half nodes.

This procedure will be used throughout Part 3 for configurations derived from the

octet truss, but will focus on fractional part count and redundancy which are necessary for

a comparative study of the different configurations. In double-layered truss structures, the

part count for each layer, the top, bottom and core, is derived separately. The number of

struts are obtained by adding the strut count for each layer, and the number of nodes is

obtained by adding the node count in the top and bottom layers. Since the top, core and

bottom layers may have a different symmetry or fundamental regions of different size, the

fractional part count can be obtained by adding Et and Vt for the separate layers.

Note that the above procedure applies to both 2-dimensional and 3-dimensional

configurations, but in the case of the latter the fundamental regions are 3-dimensional and
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hencemorecomplex. Althoughbeyondthescopeof thispaper,it is possibleto generalize

thisprocedurefor applicationto all otherdouble-layeredandmulti-layeredsymmetriesby

using3-dimensionalfundamentalregions,andby replacingtheunit trianglewith themore

generalconceptof a"unit polygon"or a"unit polyhedron".
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PART3
CONFIGURATIONS WITH REDUCED PART COUNT

In this part, the structure-generation techniques described in Part 2 are applied to

derive a variety of double-layered structures. The motivation for the examples shown here

will be explained later in Section 3.3. No attempt has been made to be exhaustive. The

selection shown here is representative and includes configurations with interesting

geometries and structural properties. This selection excludes several configurations which

were considered but were found to be unstable or to have a substantially reduced structural

performance (see section 4.1). Some of the configurations lend themselves towards an

integration of architectural and functional requirements with the structure. The notable

examples are structures with open spaces which permit insertion of modules or other

structures.

This part is separated according to the two classes of structures discussed in Part 2,

namely, configurations with only struts removed, and those with both struts and nodes

removed. In each class, structures are derived from the source octet configurations,

OCTET1 and OCTET2. These two configurations were described in Part 1 (see Figures 3

and 4), and provide the starting point for generating new structures. The top and bottom

layers of the two source configurations are shown in Figures 21 and 22 respectively. As

described earlier, the fundamental region (shown on left in each figure) has fl=l and the

array has f=12. Since the fundamental region and the unit triangle are the same in each

layer, the number of unit triangles in the fundamental region is t=l for the top and bottom

layers. The part count in the fundamental region and the unit Mangle is also the same. The

number of fractional struts in each layer equals 1/2, i.e. Ef = Et = 1/2. The number of

fractional nodes in the top and bottom layers equals 1/6, i.e. Vf = Vt = 1/6.

The top and bottom layers of OCTET1 and OCTET2 layers act as master templates

from which the top and bottom layers of the derivative configurations are obtained. The

same procedure is used for the core. The derived top, bottom and core layers are then

superimposed to obtain a new double-layered configuration. The positions of the nodes in

the top and bottom layers of the new configurations remains the same as the source

configuration in all cases. The size of the unit triangle also remains the same in the source

and all derived configurations. Keeping the unit triangle fixed is an important constraint

and provides a fixed unit measure for all configurations.
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A totalof ninedifferentderivativedouble-layeredconfigurationsaredescribedhere.

Of these,four areobtainedfrom theoctetconfigurationsby removingstrutsonly andthe

remainingfive havebothnodesandstrutsremoved.Thelatter includesoneexampleof a

configurationwherenodesareremovedfrom one layer layer only, while theother four

have nodesremoved from top and bottom layers. The derived configurations vary

significantly from one anotherin their geometry,symmetryandthedistribution of struts

andstrutsin the fundamentalregion. Eachconfigurationis identified by a name. These

examplesaxeonly a smallpartof an infinite numberof configurationswith areducedpart

countwhichcanbederivedbythestructure-generationtechniquesusedhere.Clearlymany

moreexamplescanbederivedby mixing-and-matchingdifferent top and bottom layers.

An infinite number of double-layer configurations can be generated in this way. The

number of possible double=layer configurations increases with fl, as in the case of the top

or bottom layer alone, and is greater than the number of configurations possible from each

separate layer.

For comparative purposes, all examples are shown as triangular arrays and

correspond exactly to the size of the source octet arrays shown earlier in Figs.3a and 4a. In

each case, triangular arrays of the top layer are shown in heavy lines and the bottom layer

are shown with lighter lines. The separate single layers are shown first and are followed

by the superimposed double layers. In examples where nodes are removed, the core

configuration is also shown. The fundamental region and the source region of the source

octet configuration are shown separately alongside. Within the array itself, the fundamental

region at the apex O is shaded and is subdivided into unit triangles. This subdivision into

unit triangles defines fl which gives a measure of the size in unit triangles of the

fundamental region. The number of unit triangles t in the fundamental region is derived

from relations (16-19).

3.1 Configurations with Only Struts Removed

Four examples of double-layered configurations derived by removing struts only

are described here. Of these, two are derived from OCTET1 and two from OCTET2,

Three examples have the same geometry (and hence same symmetry) for the top and

bottom layers. Such configurations may be candidates for easier assembly since the

procedure described for one layer applies to the other. The fourth example combines two

layers of different geometry and symmetry, and in addition each layer has a different value
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for fl. In all four examplesdescribedhere,the "full" core is inserted and joins the two

layers; the term full is used when no struts are removed.

3.1.1 Configuration TOROIDI (#1)

Top layer

The triangular array of the top layer of the configuration named TOROID1

(Figure 23a) is an interesting array of alternating large triangles, half of which are "empty"

and the other half are triangulated, making the entire configuration rigid in the plane. The

empty triangles permit large open areas without removing any nodes.

This top layer is an array with Symmetry Type A. Its fundamental region, is

shown shaded. Within the array, the fundamental region is subdivided into 4 unit triangles

(shown in dashed lines). Thus t=4. Its outer edge is thereby divided twice and thus fl =2.

The array of fundamental regions, also shown in dashed lines throughout the

configuration, has f=6. The fundamental region containing a portion of the top layer, is

shown separately on the left side (bottom). As before, the source region from the top layer

of OCTET1 (no struts removed), also with fl=2, is shown above it. This region has no

nodes or struts removed.

Referring to the source region of OCTET1, it has 1 full strut and 2 half-struts,

making a total of 2 struts. It also has 1 half-node, lying at the middle of the edge on the

lower side, and a 1/6th node lying at the top vertex of this region and thus. In the derived

configuration 1 half-strut is removed and the number of nodes is unchanged. Thus, for the

derived fundamental region Ef = 3/2 and Vf =2/3. Since t--4, Et = 3/8 and Vt = 1/6 (from

relations (25) and (26)). Substituting for E t and Vt in relation (10), or Efand Vf in their

place, the redundancy is R = 1 - 2 x 1/6 x 8/3 = 1/9 (or 11.1%).

Bottom Layer

The bottom layer of TOROID 1 (Figure 23b) has the same geometry and symmetry

as the top layer, but here it has a node lying at the apex O (compare with Figure 23a). The

fractional part count and the redundancy is the same as the top layer.
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Core

The core is the same as a full core since no struts are removed. Et, the number of

struts in the unit triangle of the core, is the same as OCTET1 (see Figure 5). Thus Et -- 1/2

(from relation (2)). Node that since all nodes are considered to be part of either the top or

bottom truss layers, the core will never contain any nodes.

Superimposed Layers

The double-layer configuration TOROID1 (Figure 23c, shown magnified) is

obtained by superimposing the top and bottom layers just described and inserting the full

core. A portion of the infinite configuration is shown in Figure 23d. This superimposition

produces an interesting configuration composed of interlocking "rings" of octahedra and

tetrahedra and a periodic array of "holes" (hence the name "Toroid"). The holes may be

useful for inserting various modules, e.g those used for experiments, habitation, etc. or

other parts of a spacecraft. Even though struts are removed from the top and bottom

layers, triangulation is maintained on the top and bottom surface.

The values ofE t and Vt for the superimposed layers equals the sum of Et and V t for

the three separate layers. Thus Et = 3/8 + 3/8 + 1/2 = 5/4. Similarly, Vt equals the sum of

fractional nodes in the top and bottom layers, i.e. Vt = 1/6 + 1/6 = 1/3. From relation

(11), R = 1 - 3 x 1/3 x4/5 = 1/5 or 20%. The configuration TOROID1 thus has a

redundancy of 20%. This is 13.3% less than the redundancy of OCTET1 from which it is

derived (R=33.3%).

3.1.2 Configuration REDUCEDI (#2)

Top Layer

The top layer of REDUCED1 (Figure 24a) also has large size "empty" triangles, but

here these are arranged in a pin-wheel manner around a central smaller triangle. It has

Symmetry Type B, and the shaded fundamental region is an obtuse triangle. The region at

apex O is subdivided into 3 unit triangles (1 full and 4 half unit triangles) which divide the

outer edge of the region three times. Thus t=3 and fl =3. Three such regions make a larger

equilateral triangle which, along with its three fundamental regions, is repeated in an array

of f=4.
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The sourceregion from thefull top layerof OCTET1,also with fl=3, has 1 full

and 1 half-strut, and 1 half-node. In the derived configuration, 1 half-strut is removed

making Ef = 1. Also, in the derived configuration the half-node is retained, making Vf =

1/2. Substituting for t and Ef in relation (25), Et = 1/3. Similarly, substituting for t and Vf

in relation (26), Vt = 1/6. Substituting for Et and Vt in relation (10), the redundancy R--0

(or 0%). This layer is thus a non-redundant single-layer configuration. Of course, by

itself this configuration is not a stable structure.

Bottom Layer

The bottom layer of REDUCED1 (Figure 24b) also has empty triangles but the

geometry is different from the top layer. The empty triangles are similar in arrangement as

the top layer of TOROID1, but the filled triangles are not fully triangulated as in the earlier

example and they have one less strut. It has Symmetry Type B and the fundamental region

has fl =6 and the array has f=2. The number of unit triangles in the fundamental region is

t=12 (from relation 15). It has the largest fundamental region of all the examples described

in this paper.

The source region of _TI with fl =6 has 5 full and 2 half-struts making a total

of 6 struts. Note that the two struts on the left edge of the fundamental region are not

included here. Recall that for Symmetry Type B the fundamental region is rotated 3 times

to create an equilateral triangle which is then repeated to complete an array. The two

"missing" struts will be "filled in" as a result of the 3-fold rotation. From this, 1 full and

both half-struts are removed, i.e. for the derived array Ef=4. From relation (25), Et = 4/12

= 1/3. The source region also has a one-third node, 2 one-twelveth nodes (only the

fractional portions of the nodes strictly inside the fundamental regions are counted and only

nodes that will be connected by struts after the 3-fold rotation are included), and 3 half-

nodes, making a total of 2 nodes. In the derived fundamental region no nodes are

removed, thus Vf = 2. From relation (26), Vt = 2/12 = 1/6. Substituting for Et and Vt in

relation (10), the redundancy R = 0 (or 0%). This configuration thus has 33.3% fewer

struts than the bottom layer of OCTET1 and is also an example of a non-redundant single-

layer configuration.

Core

The core is the same as a full core of OCTET1 since no struts are removed. Thus

Et = 1/2.

3-5



Superimposed Layers

The double-layer configuration REDUCED1 (Figure 24c, also shown magnified) is

obtained by superimposing the derived top and bottom layers. A portion of the infinite

configuration is shown in Figure 24(1. In REDUCED1, the top layer, taken independently,

has a fl =3, and the bottom layer has fl =6. This is the only example described here which

has different values of fl in the two layers. The matching is assured since the fl values of

the two layers are a simple multiple of one another. Note that ahhough the symmetry of

the top and bottom layers is the same, their geometries are quite different. This provides an

example of "mix-and-match" where configurations with two completely different

geometries are overlaid with the restriction that the two values of fl are simple multiples of

one another. It is easy to see from this example how an extremely large number of

structures can be generated by mixing-and-matching top and bottom layers independently

of their geometry. The number of possibilities increase when two different symmetries are

overlaid. Double-layer configurations with different top and bottom layers permit different

functional possibilities for the top and bottom surfaces.

The values of Et for the superimposed layers equals the sum of Et for the three

layers. Thus Et = 1/3 + 1/3 + 1/2 ---7/6. Similarly, Vt equals the suna of fractional nodes

in the top and bottom layers, i.e. Vt = 1/6 + 1/6 = I/3. From relation (11), R = 1/7 or

14.3% as compared to the value of R=33.3% for OCTET1 from which this structure was

derived.

3.1.3 Configuration REDUCED2 (#3)

Top Layer

The top layer of REDUCED2 (Figure 25a) has a Symmetry Type C (alternate I, see

Figure 12c) and is composed of triangles and rhombi. !t is characterized by an absence of

mirror planes and is shown as a rhombic array which is twice the size of the source

triangular array. It is composed of alternating triangles and hexagons, but the hexagons are

subdivided into three rhombi. The fundamental region is also a rhombus which is

subdivided into unit triangles. The fundamental region has fl=2 and is composed of 8 unit

triangles, i.e. t=8. The array has f=6.

The source rhombic region of OCTETI with fl=2 has 3 full and 2 half-struts

making a total of 4 struts from which 1 full strut is removed in the derived fundamental
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region. ThusEf = 3, andfrom relation (25),Et = 3/8. Thefull fundamentalregionalso

has2 half-nodeslying at two edgesanda 1/3rdnodeat thevertexof therhombus. In the
derived fundamentalregion, no nodeis removed. Thus Vf = 4/3, andVt= 1/6. From

relation(10), theredundancyR = 1/9(or 11.1%).

Bottom Layer

The bottom layer (Figure 25b) has the same geometry and symmetry as the top

layer just shown. In is in a shifted position, and is also a reflection of the top layer. This

can seen by noting that the orientation of the rhombi within each hexagon of the bottom

layer is a reflection of the rhombi within each hexagon of the top layer. The fundamental

region is similar in the top and bottom layers, and the fractional part count and redundancy

remain unchanged, i.e. R=l/9. An alternative bottom layer can have the rhombi within

each hexagon oriented the same way as the top layer.

Core

The core is the same as the full core of OCTET1 since no struts are removed. Thus

Et = 1/2.

Superimposed Layers

The double-layered configuration REDUCED2 (Figure 25c, shown magnified), like

TOROID1, has the same geometry for the top and bottom layers. A portion of the infinite

configuration is shown in Figure 25d. Each layer has Symmetry Type C. Looking at the

top surface, the tetrahedra and the octahedra lying below the rhombi are "incomplete",

while those lying below the triangles are full. The full octahedra share a top vertex with the

full inverted tetrahedra. This configuration has no mirror symmetry anywhere. The 3-fold

rotational symmetry can be seen by the pin-wheel arrangement around the full octahedra,

the full inverted tetrahedra and the full tetrahedra.

The values of Et for the superimposed layers equals the sum of E t for the three

layers. Thus Et = 5/4. Similarly, Vt equals the sum of fractional nodes in the top and

bottom layers, i.e. Vt = 1/3. From relation (11), R = 1/5 or 20%. The configuration

REDUCED2, like TOROID1, has a redundancy of 20% as compared to 33.3% for

OCTET1 from which it is derived.
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3.1.4 Configuration REDUCED3 (#4)

Top Layer

The top layer of REDUCED3 (Figure 26a) has the same geometry (appearing

inverted) as that of the top layer of REDUCED1 (see Figure 24a). However, in this case

the symmetry is different and corresponds to Symmetry Type C, (alternate 2, see Figure

12d). The rhombic array has no mirror-symmetry and cannot be bisected into two halves

by a mirror plane. Compared with REDUCED1, the fundamental region is a rhombus and

is reduced the size of the fundamental region in the earlier example. The fundamental

region has fl =3. The number of unit triangles in the fundamental region, given by relation

(19), is t=6. The array is also a rhombus with f--4.

The source region of the full OCTET2 has 1 full node and 3 full struts. In the

derivative, 1 strut is removed. Thus Ef = 2. From relation (25), Et=l/3. Also, in the

derivative the node is retained. Thus Vf = 1, and Vt = 1/6 (from relation (26)). The

redundancy is R = 0 (or 0%). The top layer of REDUCED3 is another example of a non-

redundant 2-dimensional structure.

Bottom Layer

The bottom layer (Figure 26b) has the same geometry and symmetry as the top

layer. The only difference is that here the large triangles are pointing down, whereas in the

top layer the same triangles were pointing up. The fractional part count and the redundancy

are the same as for the top layer.

Core

The core is the same as the full core of OCTET2 since no struts are removed. Thus

again Et = 1/2.

Superimposed Layers

The double-layered configuration REDUCED3 (Figure 26c, shown same size as the

top and bottom layers) is obtained by superimposing the top layer and the bottom layer as

shown and inserting the full core. A portion of the infinite configuration is shown in

Figure 26d. The small triangles of one layer are placed directly over the large triangles of

the other layer. Since the two point the same way this produces concavities in the shape of

frustums of larger tetrahedra which are separated by smaller full octahedra. Looking at it

from above, each full octahedron is surrounded by three frustums which are facing up

3-8



alternatedby threewhich are facing down. This makesthe configuration look like an

undulatingsurfacearoundtheoctahedron.

The valuesof Et for thesuperimposedlayersequalsthe sumof Et for the three

layers. That is, Et = 7/6. Similarly, Vt equalsthesumof fractionalnodesin the top and
bottomlayers,i.e. Vt = 1/3. From relation(11),R = 1/7or 14.3%(which is thesameas

for configurationREDUCED1)ascomparedto R=33.3%for OCTET2 from which it is
derived.

3.2 Configurations with Nodes and Struts Removed

This class of configurations consists of structures in which nodes are removed

periodically over the entire structure. Struts attached to these nodes are removed in the

process. This is achieved by removing nodes and struts from the fundamental region.

Struts attached to this node are also removed in the process. Configurations of this type

have larger open areas within a structure, making it lighter and providing the possibility for

efficient attachment of larger spacecraft components. The open areas are not restricted in

size in many examples.

The removal of nodes can be thought of as removing entire portions of the octet

configuration. This removal leaves behind empty spaces in the shape of large sized

polyhedra or portions of such polyhedra. In cases where the empty spaces are "holes", a

special class of structures termed "toroidal" configurations are obtained. One example of a

toroidal structure with small holes (TOROID1), has already been discussed.

Five double-layered configurations with nodes and struts removed are presented.

Two examples of these are derived from OCTET l, and three from _T2. These five

include three examples of double-layered toroidal structures.

3.2.1 Configuration SKEWI (#5)

Top Layer

The top layer of SKEW1 (Figure 27a) is a well-known semi-regular tessellation

composed of hexagons and triangles, where the hexagons can be seen as "islands"
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surroundedby "rings" of triangles. Each ring can be thought of as a flat torus. This

configuration can be left-handed or right-handed, and is the only example in this paper

where the centers of symmetry, when joined, produce a skewed triangular grid. Skewed

triangular grids have a Symmetry Type C. The fundamental region is a rhombus which is

embedded in the skewed grid. The fundamental region has Symmetry Type C but because

it is also skewed, it is different than either alternate 1 or alternate 2 as shown in Figure 12.

The unit Mangles within the shaded fundamental region at O are skewed with respect to the

rhombus. Skewed grids cannot be described in terms of a single division like fl since a

second parameter t"2 is necessary; details are described in [12]. The number of unit

triangles in the fundamental region equals 14, i.e t=14.

The source full region of OCTET1 has 7 full struts in its fundamental region from

which 2 struts are removed. Thus Ef = 5. From relation (25), Et = 5/14. The full region

also has 2 full nodes in the interior of the rhombus and a 1/3rd node which is removed.

Thus Vf = 2. From relation (26), Vt = 1/7. From relation (10), the redundancy R = 1/5 or

20%. In the figure, the removed node is shown in the fundamental region and the array,

but is clearly disconnected from the rest of the structure.

Bottom Layer

The bottom layer (Figure 27b) has the same symmetry and geometry as the top

layer. It is in a shifted position with the apex O lying at the center of a hexagon of the

tessellation. By comparison, the top layer has the apex O at the center of a triangle. Within

the fundamental region (and hence the unit triangle), the part count and the redundancy is

the same in each layer though the distribution of the nodes and struts is different. For

example, in the case of nodes, the bottom layer has two 1/6th nodes while the top has one

1/3rd node.

Core

The core (Figure 27c) has an interesting geometry consisting of hexagons

surrounded by 12-sided non-convex polygons in a trefoil shape. The core struts are

removed along with the nodes on the top and bottom layers. The core thus has a dependent

geometry.

The full region of _T1 has 7 struts from which 2 struts are removed. Thus Ef = 5.

From relation (25), Et = 5/14.
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Superimposed Layers

The double-layered configuration SKEW1 is obtained by superimposing the top

layer and the bottom layer and inserting the core. A rhombic array is shown in Figure 27d

and a portion of the infinite configuration is shown in Figure 27e. In the superimposed

position, the polygons of one layer are juxtaposed over different parts of the other layer.

The triangles overlaid on the hexagons, and the hexagons overlaid on the triangles, define

an undulating triangulated surface. Some triangles of the top layer are overlaid on inverted

triangles of the bottom layer and make full octahedra. Other triangles of the top layer are

overlaid on nodes of the bottom layer and make full inverted tetrahedra. Three inverted

tetrahedra surround the full octahedra to make a composite module which is repeated at

specific locations. SKEWl is an interesting example of an all triangulated structure derived

from the octet configuration.

As before, the value of Et for the superimposed layers equals the sum of Et for the

three layers. That is, Et = 5/14 + 5/14 + 5/14 = 15/14. Similarly, Vt equals the sum of

fractional nodes in the top and bottom layers, i.e. Vt = 1/7 + 1/7 = 2/7. From relation

(11), R = 1 - 3 x 2/7 x 14/15 = 1/5 or 20%. The configuration SKEW1 has a redundancy

of 20% compared with 33.3% for OCTET1 from which it is derived.

3.2.2 Configuration MINIMUMI (#6)

Top Layer

The top layer of MINIMUM1 (Figure 28a) is a semi-regular tessellation composed

of alternating triangles and hexagons. The hexagons, six times the area of the triangle, are

obtained by removing the node lying in the center of each hexagon. This configuration has

Symmetry Type A, the fundamental region has fl=2, and the array has f=6. The

fundamental region has 4 unit triangles, i.e. t=4.

The source region of the octet layer has 1 full and 2 half-struts making a total of 2

struts from which 1 full strut is removed. Thus Ef = 1, and from relation (25), Et = 1/4.

In addition, the full configuration has a half-node lying on the mid-edge of the region and a

1/6th node at the vertex from which the 1/6th node is removed. Thus Vf = 1/2. from

relation (26), Vt = 1/8. The redundancy is R = 0 (or 0%). This is another example of a

non-redundant 2-dimensional configuration. As before, the removed node is shown for

visualization purposes although it is disconnected from the rest of the configuration.
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Bottom Layer

The bottom layer (Figure 28b) is already a familiar one from earlier examples and is

identical to the top layer of TOROID1 (see Figure 23a and earlier description). Note that

this layer has only struts removed. The part count and the redundancy is the same as the

top layer of TOROIDI, i.e. Et = 3/8, Vt = 1/6 and R = 1/9 (or 11.1%).

Core

The core (Figure 28c), in the plan view shown, is composed of hexagons

surrounded by the non-convex 12-sided polygons as seen earlier in the core of SKEWl

(Figure 27c). The full core has 1 full and 2 half-struts making a total of 2 struts; the half-

struts lie on the edges of the region. In the derived core, 1 half-strut is removed. Thus Ef

= 3/2. Here also t--4. Thus Et = 3/8 (from relation (25)).

Superimposed Layers

The double-layered configuration MINIMUM1 (Figure 28d, shown magnified),

obtained by superimposing the top, bottom and core layers, is an interesting example of a

hybrid configuration where the top and bottom layers are of different classes. The top has

nodes and struts removed while the bottom layer has only struts removed. After

superposition, the configuration obtained is composed of full octahedra and full tetrahedra

only. In this sense, MINIMUM1 is also an "octet" configuration though with many

components removed. A portion of the infinite configuration is shown in Figure 28e.

Each octahedron is surrounded by 3 upright tetrahedra. This arrangement acts like

a composite module which is repeated throughout the array, as in SKEW1. Three such

modules are connected by an inverted tetrahedron. The three inclined faces of the inverted

tetrahedra lie on three inclined 2-dimensional trusses which are continuous. The entire

configuration has three parallel sets of inclined trusses intersecting at 120 ° .

The sum of fractional struts from each layer makes Et = 1. The sum of fractional

nodes of the top and bottom layers makes Vt = 7/24. The redundancy R -- 1/8 (or 12.5%),

from relation (11). Of all examples discussed in this paper, MINIMUM1 has the lowest

redundancy (hence the name MINIMUM l).
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3.2.3 Toroidal Configurations

Three examples of toroidal configurations are presented. The formal aspects are

first described and are followed by specific examples of the configurations TOROID2,

TOROID3 and TOROID4 (see Figures 29d, 30d and 31 d).

Periodic toroidal configurations are composed of doughnut-shaped modules in 2- or

3-dimensional arrays where individual doughnuts (toil) are fused together to make a

continuous structure. In the examples described here, the torus is composed of linear

tubular segments. Each tubular segment is composed of linear arrays of tetrahedra and

octahedra. The axes of these segments, and hence of the tori, define a network. These

networks can have different topologies and sizes, and they correspond to plane tessellations

(though in some cases only in their plan view).

Since the source structure for deriving these configurations is the octet

configuration, only double-layered toroidal configurations are described here. The double-

layered examples are a part of a large class of 3-dimensional toroidal configurations derived

from 3-dimensional networks. Note that in the examples described here the interior space

of the tubular segments is not "hollow". The exterior surfaces of these configurations

define a continuous "toroidal surface", as required by the strict definition of a torus. The

cross members in the interior are required for stability purposes in pin-jointed structures.

When the tubular segments have a triangular cross-section, the configurations are pure

toroidal surfaces since no interior struts are needed.

Toroidal configurations have an interesting property of recursion. The toroidal structures

described here can be derived from simple tessellations by converting each single strut

(edge) of the tessellation into tubular segments composed of an array of struts "wrapped"

around a tube. Each strut (edge) of this wrapped array can again be converted into a

tubular segment as in the previous step, and so on. This process of recursion provides a

morphological device which enables us to cover larger areas with struts of the same size.
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3.2.3.1 Configuration TOROID2 (#7)

Top Layer

The top layer of TOROID2 (Figure 29a) is a plane toroidal tessellation. It is

composed of flat tori which enclose large open areas enclosed by triangulated strips. It is

related to the skew tessellation of Figure 27a. Here the open areas are non-regular

hexagons with alternating sides of two different lengths. In the illustration, the open areas

are halved since the size of the array shown is relatively small. A larger-sized array than

the one shown in the illustration would show the toroidal nature of this tessellation more

clearly. The configuration shown has a Symmetry Type B, the fundamental region has

f1=6, and the array has f=2. From relation (17), t=12.

The source region of the source octet layer has 5 full struts and 2 half-struts making

a total of 6 struts. In the derived fundamental region, 2 full and 1 half-strut is removed.

Thus Ef = 7/2, and E t = 7/24. The octet configuration also has 1 full node in the interior of

the region and 2 half-nodes on the edges from which 1 half-node is removed. Thus Vf =

3/2, and Vt = 1/8. The redundancy R -- 1/7 (or 14.3%).

Bottom Layer

The bottom layer (Figure 29b) is a slightly different toroidal tessellation. Here the

open areas (also shown halved) are large triangles. The edges of the large open triangles are

three strut lengths long. This configuration also has Symmetry Type B, the fundamental

region has fl=6, the array has f=2, and t=12 as in the top layer.

The source region of the octet layer with fl=6 has 5 full struts and 2 half-struts

from which 1 full and 1 half-strut is removed in the derivative configuration (see the

comments regarding strut and node count for this type of region in the discussion for the

bottom layer of configuration REDUCEDI). Thus Ef = 9/2, and Et = 3/8. In addition, the

full octet layer has a 1/3rd node at the obtuse vertex, two 1/12th nodes at the acute nodes

and 3 half-nodes at the three edges of the region, making a total of 2 full nodes. From this

the two 1/12th nodes are removed. Thus, Vf= 11/6, and Vt = 11/6 x 1/12 = 11/'72 (from

relation (26)). Substituting for Et and Vt in relation (10), the redundancy R = 1 - 2 x 11/72

x 8/3 = 5/27 (or 18.52%).
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Core

The core (Figure 29c) has a dependent geometry composed of rows of hexagons (in

the plan view). It has 5 full struts and 2 half-struts (half struts lie on the edge of the

fundamental region ) making a total of 6 struts. In the derived core, 1 full and 1 half-strut

is removed. Thus Ef = 9/2. Since the core also has t=12, Et = 3/8.

Superimposed Layers

The double-layered configuration TOROID2 (Figure 29d, shown magnified) is

obtained by superimposing the three layers. A portion of the infinite configuration is

shown in Figure 29e. The triangulated strips on the top and bottom, with the rows of

hexagons in the core, make up the tubular segments of each torus. Three tubular segments

meet around an inverted tetrahedron in a pinwheel manner. The vertical axis through each

inverted tetrahedron is a 3-fold axis of rotation. Alternative toroidal structures can be

obtained when the 3-fold axes pass through the upright tetrahedra, the octahedra, or a

combination of these polyhedra. The empty spaces in the structure (shown halved) have a

non-regular hexagon superimposed over a large equilateral triangle.

The sum of fractional struts from the three layer makes Et = 25/24. The sum of

fractional nodes of the top and bottom layers makes Vt = 5/18. From relation (11), the

redundancy R = 1/5 (or 20%). Again, this should be compared with the value of R=33.3%

for OCTET1 from which this configuration is derived.

3.2.3.2 Configuration TOROID3 (#8)

Top Layer

The top layer of TOROID3 (Figure 30a) has the same geometry and symmetry as

the top layer of TOROID2 (see Figure 29a and the earlier description). It can be obtained

from the earlier example by a reflection around the horizontal line passing through the

apex O. The part count and redundancy are the same as the top layer of TOROID2, i.e.

Et = 7/'24, Vt = 1/8, and R = 1/7 (or 14.3%). Also, t=12, as in the earlier example.

Bottom Layer

The bottom layer (Figure 30b) has the same geometry and symmetry as the top

layer. It can be obtained from the top layer by a reflection around the horizontal line

passing through the apex O. It is identical to the top layer of TOROID2 (Figure 29a).

Again Et -- 7/24, Vt = 1/8, and R = 1/7.
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Core

The core (Figure 30c) here is also composed of rows of hexagons in the plan view.

The geometry, obtained by removing struts associated with the removed nodes, is also

dependent as in the earlier examples. The full configuration has 5 full struts and 2 half-

struts making a total of 6 struts from which 1 full and 2 half-struts are removed. Thus

Ef = 4, and since t=12 as in the top and bottom layers, E t = 1/3.

Superimposed Layers

The double-layered configuration TOROID3 (Figure 30d, shown magnified) is

related to TOROID2 and is obtained by superimposing the layers as before. Here the three

tubular segments meet around an octahedron. A portion of the infinite configuration is

shown in Figure 30e. The empty spaces are composed of two identical non-regular

hexagons overlaid over one another, but one is rotated at 60 ° with respect to the other.

The fractional struts in the unit triangle Et = 11/12, is obtained by adding the values

of Et for each of the three layers as before. Similarly, Vt = 1/4. Finally the redundancy is

R = 2/11 (or 18.2%) as compared with 33.3% for OCTET2.

3.2.3.3 Configuration TOROID4 (#9)

Top Layer

The top layer of TOROID4 (Figure 31a) is a toroidal tessellation based on a

different network. Here, the center-lines of the triangulated strips make a regular triangular

grid, showing a self-similarity with the source triangular grid from which the configuration

is derived. This self-similar recursion could be continued to the next stage where each

individual strut within a triangulated strip could itself be a triangulated strip, and so on.

The configuration shown has fl=4, f=3, and Symmetry Type A. The number of unit

triangles in the fundamental region is t=16.

The source region of the octet layer has 6 full struts and 4 half-struts from which 1

full and 2 half-struts are removed in the derived fundamental region. Thus Ef = 6, and

Et = 3/8. The full region also has 1 full node, 3 half-nodes and a 1/6th node from which

the 1/6th node is removed. Thus Vf = 5/2 and Vt = 5/32. From relation (10), the

redundancy is R = 1/6 (or 16.7%).
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Bottom Layer

The bottom layer (Figure 31b) has the same geometry and symmetry as the top

layer. One can be obtained from the other by a reflection around the horizontal line passing

through the apex O. The part count and redundancy is the same as the top layer.

Core

The core (Figure 31c) is composed of rows of hexagons in a triangular arrangement

determined by the network. The full region has 6 full struts and 4 half-struts making a total

of 8 struts. In the derived core fundamental region, 2 half-struts are removed. Thus Ef = 7

and Et -- 7/16.

Superimposed Layers

The double-layered configuration TOROID4 (Figure 31d and 3 le) is obtained by

superimposing the top, bottom and core just described. This example, like TOROID2 and

TOROID3, is also composed of tubular segments. Six such segments meet at the

octahedron in the center of the array shown in the figure. The empty spaces are triangular

holes composed of a smaller triangle superimposed over a larger triangle.

Taken together, Et = 19/16 for all three layers. Similarly, Vt = 5/16. From

relation (1 l), the redundancy for TOROID4 is given by R = 4/19 (or 21.1%) compared to

33.3% for OCTET2 from which it is derived.
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PART 4

REMARKS AND SUMMARY OF RESULTS

4.1 Rationale and Analytical Considerations for the Truss

Configurations Presented

It is possible to generate many different truss configurations using the structure-

generation techniques presented in Part 2. Although approximately twenty-five

configurations derived from the Octet truss were investigated in the work leading to this

paper, only nine have been presented. It is noted that prior work for deriving and

analyzing a special class of "statically determinate" reduced-part-count structures is

presented in reference [13].

The selection of these nine configurations presented here was based on both

practical and analytical considerations. For each reduced-part-count truss configuration,

analytical (finite-element) models were formulated. Models were also constructed for the

two configurations with full part count, OCTET1 and OCTET2. The analytical models

were formulated by "cutting" a finite portion from the infinite configurations shown in

Part 3.

The finite truss models were constructed to be hexagonal in shape. This shape is

typical for many large space applications. Each model utilized strut and joint properties

assumed to be typical for large precision truss applications. Descriptions of these

properties can be found in reference [5]. A detailed presentation of analytical results is

beyond the scope of this paper which focuses on the morphological aspects of each

configuration. More details concerning the analytical results for the structures presented

here are contained in reference [141. The practical design and structural performance of the

truss configurations are the subjects of current and future work. However, a few

comments are appropriate here.

Each of the nine truss configurations presented is structurally stable (not a

mechanism). Stability is not guarantied from the generation techniques presented in Part 2.

Furthermore, visual inspection of a particular truss configuration is not in general a reliable

means of detecting an unstable structure. Thus, the primary purpose of the analytical

models was to insure stability.
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Thefact thataparticularconfigurationis stableis not sufficient to makeit useful.

Severalreducedpart countconfigurationswereexaminedthat althoughstable,showeda

significant decline in structural performance when compared to the original octet

configurations. Thegaugefor structuralperformancein selectingthenineconfigurations

presentedherewas free-freenaturalvibration frequency. Free-freevibration frequency

providesa useful measureof structural stiffness. The natural frequenciesof the truss

modelsexaminedrangedfrom 16Hz for configurationREDUCED3,to 21.7Hz for both

configurationsOCTET1andOCTET2. The reductionin frequencyfor thereducedpart

count configurationsrangedfrom 15%for TOROID2 to 26% for REDUCED3. A more

complete structural analysis of the various configurations and an in depth comparative

study are underway at the time of this writing.

A primary motivation for finding reduced-part-count structures is to reduce

complexity and on-orbit assembly time. The results of the finite element analyses indicate

that it is possible to generate structures with significantly reduced part count and only a

moderate decrease in structural performance. Reference [14] discusses some alternatives

for overcoming reductions in structural performance white retaining reduced part count.

4.2 Summary of Results

The part count and the redundancy for the nine truss configurations are summarized

in Table 2. The fractional part count, given by the number of struts Et and nodes Vt within

a unit triangle, is given for each truss. A comparison of part count is possible since the unit

triangle is kept the same size throughout all the examples of derived configurations. The

number of redundant struts (relations 7 and 8) is given in the third column. The ratio of

redundant struts to the total number of struts, R, is given in the fourth column. The octet

configurations OCTETI and OCTET2 are given at the bottom to provide a reference.
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No.

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

Configuration
and

Single-Layer
Symmetry Types ( )

Struts in

Unit Triangle

Nodes in

Unit Triangle

Redundant
Struts

(Et) (Vt) (r)
Redundancy

(R)

TOROID 1 (A) 5/4 1/3 1/4 (20%)

REDUCED 1 (B) 7/6 1/3 1/6 (14.3%)

REDUCED2 (C) 5/4 1/3 1/4 (20%)

REDUCED3 (C) 7/6 1/3 1/6 (14.3%).

SKEW 1 (C) 15/14 2i7 3/14 (20%)

MINIMUM1 (A) 1 7/24 I/8 (12.5%)

TOROID2 (B) 25/24 5/18 5/24 (20%)

TOROID3 (B) 11/12 1/4 1/6 (18.2%)

TOROID4 (A) 19/16 5/16 1/4 (21.1%)

OCTET1 (A) 3/2 1/3 1/2 (33.3%)

1/5

1/7

1/5

1/7

1/5

1/8

1/5

2/11

4/19

1/3

1/3OCTET2 (A) 1/33/2 1/2 (33.3%)

Table 2. Comparative Fractional Part Count and Redundancy of the Octet Truss
and Nine derived Configurations.

The reference octet trusses have R=33.3%. Among the derived configurations, the

redundancy varies from a high of 21.1% for TOROID4 to the low of 12.5% for

MINIMUM 1.

A useful comparative measure for the relative part count of configurations can be

given by the ratio of the number of struts to nodes. For infinite configurations, like the

ones being discussed here, this ratio is given by Et/Vt. Table 3 lists this ratio for the nine

configurations. The ratio is also equivalent to the number of struts per node in an infinite

configuration with the same geometry. Thus the reference trusses, OCTET1 and OCTET2,

have 4.5 struts for every node. The minimum value for this ratio is 3.0, which would

occur for a non-redundant structure. All derivative configurations range between the two

extreme values of 3.0 and 4.5. More specifically, the lowest ratio is 3.43 struts per node.
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No. Configuration

Ratio of Struts to
Nodes in Unit

Triangle (Et/Vt)*

r

#1 TOROID1 3.75

#2 REDUCED 1 3.5

#3 REDUCED2 3.75

#4 REDUCED3 3.5

#5 SKEW1 3.75

#6 MINIMUM 1 3.43

#7 TOROID2 3.75

#8 TOROID3 3.67

#9 TOROID4 3.8

#10 _1 4.5

4.5#11 OC-q_T2
||||

*For an infinite non-redundant truss, Et/V t = 3.0

Table 3. The Ratio of Struts to Nodes for a Unit Triangle Region of
Each of the Eleven Truss Configurations.

Lowering the ratio of struts to nodes below 3.43 in infinite double-layered

configurations would be an attractive goal to pursue. Though geometric configurations

with a lower ratio may be found, the examples presented here are those which resulted in

frequency reductions of 15-26%. This is an important constraint and makes the search for

stiffand uniformly periodic structures a difficult challenge.

Morphological studies provide an important and systematic direction in this

challenge for the discovery of structures with a reduced number of components. Towards

this end, the fundamental region and the unit triangle method described here provides an

expedient and economical way to derive new geometries for infinite, periodic space

structures. This method also provides a compact way to derive the part count and
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redundancy. Sincea commonapproachis usedfor all spacestructures,independentof

their geometry, symmetry or dimension, a comparative study is made possible. Though

the examples described here are based on the octet truss, the approach described here is

general and can be easily extended to other source geometries and symmetries in 2- and 3-

dimensions. The generality of the approach opens up directions for further research in the

morphology of novel space structures.
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GLOSSARY OF TERMS

Frequency

The term "frequency" is used for number of linear divisions (or unit triangles) fl of a

fundamental region. In most cases this is along the edge of the fundamental region. It is

also used for the number of divisions (fundamental regions) f along the edge of an entire

periodic array. While the former provides the extent of subdivision of the fundamental

region, the latter defines the extent of plane-filling of the entire array.

Full (structure, region ........ etc.)

The term "full" is used to identify a structure or region from which no struts have been

removed. Full structure, full fundamental region, full layer, full top layer, etc. are

configurations containing all struts from which derivatives are obtained by removing struts.

The term is adapted from "full set" used in set theory.

Fundamental Region

The minimum region of a symmetrical configuration which can generate an entire periodic

structure by symmetry operations (reflections, rotations, translations).

Inversion (Plane of Inversion)

The term "plane of inversion", represents a special type of symmetry plane which permits

"inversion". By inversion, the region on the top left of this plane (and facing down) is

transformed or "inverted" to the bottom right of the plane (and facing up). In the octet

truss, the planes of inversion are perpendicular to the top and bottom layers of the truss.

Mechanism

An unstable pin-jointed structure.

Octet Configuration

The octet truss or the tetrahedral truss composed of a close-packed array of regular

octahedra and tetrahedra.

Part Count

The number of component parts in a physical space structure, i.e. the number of nodes,

struts, and other components.

7-1



Plane-filling

(adj.) Having the property of filling the entire (2-dimensional) plane completely without

gaps, e.g. a plane-filling polygon, or a plane-filling procedure.

Space-filling

(adjective) Having the property of filling entire space (usually 3-dimensional) completely

without gaps;

(noun) A structure which has the property of filling all space; alternatively also sometimes

termed a "close-packing".

Space Structure

A generic term for a 3-dimensional configuration. Usually used for configurations

composed of topological elements of different dimensions, namely, vertices, edges, faces

and cells. In a physical structure, these topological elements translate into nodes, struts,

panels, and 3-dimensional modules.

Symmetry Elements

The (abstract) component parts of a symmetrical structure. Symmetry elements include

mirror planes, axes of symmetry, etc.

Symmetry Operations

Reflection, rotation, translation and their combinations.

3-fold Symmetry / 3-fold Rotation

The usage P-fold symmetry suggests a P-fold rotation, or the presence of a P-fold axis of

rotation in a structure. A rotation of P times through an angle of 360°/P about this axis

brings the structure back to its original orientation. In structures with a 3-fold symmetry,

P=3, and the structure is composed of three identical parts which can be brought in

congruence with one another by a rotation of 120 ° about the 3-fold axis.

Unit Triangle

The minimum equilateral triangle unit used for generating a periodic octet array. It is the

plan view of the triangular prism unit of the octet truss, but is used here as a convenient 2-

dimensional unit (of constant size) used for comparative studies of different double-layered

truss configurations.



NOTES

1. Alternatively, all edges of the space-filling of oct_edra and tetrahedra can be determined by
"vectors" which are defined by lines joining the center of the cube to the mid-points of its

edges. Since the cube has 12 edges, and the opposite two lie on the same vector, 6 distinct
vectors can be specified this way. All edges of the oct_edral-tetrahedral space-filling are
parallel to these 6 vectors. The 6 vectors define a 6-dimensional Euclidean space, and the
octet truss can be thought of as a 3-dimensional structure projected from 6-dimensional

Euclidean space. The concept of seeing 3-dimensional structures as projections of n-
dimensions broadens the definition of space structures and provides a more general way to

classify and generate new space structures.

2. The symmetry of the octet truss corresponds to the symmetry group p3ml in the
international crystallographic notation.

3. An interesting alternative to this procedure is to use "self-similarity" for plane-filling. By
this method, one larger equilateral triangle is obtained from four smaller equilateral triangles
such that the side of the larger triangle is twice the side of the smaller triangle. This
procedure can be continued recursively and the value of f doubles at each stage of
recursion.

,

.

.

These eight are a part of 16 double-layered symmetries associated with the triangular-

hexagonal symmetry groups (see Fig.187 in [11], where the "unit mesh" number 75
corresponds to the double-layered octet truss).

Symmetry Type A is notated as p3ml in the international crystallographic system.
Symmetry Type B has the crystallographic symbol p31m, and Symmetry Type C has the
symbol p3 (see [10]). Note that the single layer of the octet can also be associated with
two other plane symmetry groups, p6mm and p6. These have 6-fold symmetry at each
node; in the examples described later in Part 3, Figure 27a corresponds to p6 and Figure

28a to p6mm. However, since the double-layered octet has 3-fold axes of symmetry only,
the introduction of these two additional symmetries was not considered necessary.

The two correspond to the two basic subdivisions of an equilateral triangle and are used in
the derivation of geodesic domes. In spherical subdivisions based on the icosahedron,
Alternative 1 described here corresponds to the 'alternate' breakdown, and Alternative 2 is
the 'triacon' breakdown.

.

o

.

Incidentally, the rhombi with fl=3 in Figures 12c and 12d correspond to the

crystallographic unit cell which can fill the entire plane by translations only. This gives us
an alternative plane-filling procedure.

The structures'described here are restricted to the removal of nodes and struts. The

techniques of structure-generation described here can be extended to include removal of
panels (faces) and 3-dimensional cells.

Note that in the method described here, the subdivision inside the fundamental region has

the same geometry as the octet configuration. In this sense, there is a property of "self-
similarity" associated with the procedure described here. This self-similarity can be used
recursively to derive "fractal" trusses with a reduced part count.
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I0.

11.

12.

This particular derivative, which will be used later in two different derivatives, is also a
part of an infinite series of tessellations composed of Sierpinski triangles. Sierpinski

triangles are characterized by a recursive self-similarity and are thus fractals. Periodic
tessellations using these triangles and their 3-dimensional extension into an infinite class of
'fractal tetrahedra' have been suggested concurrently in a separate project (Non Redundant

Space Structures, unpublished report to Joint Institute of Flight Sciences, George
Washington University, NASA LaRC, May 1990, available from authors). The inherent
property of non-redundancy in these fractal polyhedra and the Sierpinski triangle have also
been pointed out; details are being prepared at the time of this writing.

An alternative approach is to determine the number of equilateral triangular regions of
frequency fl within a triangular array of frequency f. Such equilateral triangles correspond
to the fundamental regions of frequency fl. For a fixed fl, the number of such triangular

regions in an array of frequency f equals f2 for each Symmetry Type.

This zig-zag array is a layer through the "diamond lattice", a lattice which can be visualized

as an array of 4 struts meeting at every node at co-equal angles of 109028 '. This makes
TOROID2 a double-layered slice of a 3-dimensional "infinite polyhedron" based on the
diamond lattice. Infinite polyhedra have been described in Infinite Polyhedra by B.
Wachman and M. Kleinman (Technion, Israel institute of Technology, Haifa, Israel,
1974). In the present work, TOROID1 is obtained by a different procedure, i.e. by
removing struts from an octet truss.
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